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The complexity and natural variability of ecosystems present a
challenge for reliable detection of change due to anthropogenic
influences. This issue is exacerbated by necessary trade-offs that
reduce the quality and resolution of survey data for assessments
at large scales. The Peace–Athabasca Delta (PAD) is a large inland
wetland complex in northern Alberta, Canada. Despite its geo-
graphic isolation, the PAD is threatened by encroachment of oil
sands mining in the Athabasca watershed and hydroelectric dams
in the Peace watershed. Methods capable of reliably detecting
changes in ecosystem health are needed to evaluate and manage
risks. Between 2011 and 2016, aquatic macroinvertebrates were
sampled across a gradient of wetland flood frequency, applying
both microscope-based morphological identification and DNA
metabarcoding. By using multispecies occupancy models, we dem-
onstrate that DNA metabarcoding detected a much broader range
of taxa and more taxa per sample compared to traditional mor-
phological identification and was essential to identifying signifi-
cant responses to flood and thermal regimes. We show that
family-level occupancy masks high variation among genera and
quantify the bias of barcoding primers on the probability of de-
tection in a natural community. Interestingly, patterns of commu-
nity assembly were nearly random, suggesting a strong role of
stochasticity in the dynamics of the metacommunity. This variabil-
ity seriously compromises effective monitoring at local scales but
also reflects resilience to hydrological and thermal variability. Nev-
ertheless, simulations showed the greater efficiency of metabar-
coding, particularly at a finer taxonomic resolution, provided the
statistical power needed to detect change at the landscape scale.

occupancy | detectability | taxonomic resolution | stochasticity |
power analysis

Tackling the global loss of biodiversity (1) is hindered by a lack
of basic biological information needed to guide sustainable

management strategies (2). Despite legal protections, freshwater
ecosystems are increasingly degraded by multiple stressors (3). In
addition, the quality and volume of data collected by monitoring
programs often fail to support evidence-based management de-
cisions (4–6). Here, we demonstrate how DNA metabarcoding
can resolve challenges faced by traditional monitoring, alter our
perspectives on ecosystem dynamics, and improve our understanding
of natural variation and sampling error, supporting evidence-based
decision making.
DNA barcoding uses short genetic sequences to identify in-

dividual taxa. By contrast, DNA metabarcoding supports simul-
taneous identification of entire assemblages via high-throughput
sequencing (7, 8). Using metabarcoding for ecosystem monitor-
ing provides an opportunity to identify organisms in bulk samples
at a high taxonomic resolution consistently and accurately (Bio-
monitoring 2.0; ref. 9). The accuracy, consistency, and resolution of
taxonomic identification remains a constraint for many biomonitoring

programs that must trade off data quality to make assessment pro-
tocols rapid and cost-effective (10). Aquatic macroinvertebrates ex-
emplify this challenge, as their diversity of forms and functions are
sensitive to multiple drivers of ecosystem condition. Thus, ecosystem
degradation can be identified based on changes in assemblage com-
position due to environmental filtering (5). Despite decades of devel-
opment, the challenges associated with traditional methods of sample
processing limit inference of biomonitoring programs to gross status
classifications (e.g., ref. 11). Metabarcoding presents an opportunity to
describe community composition more accurately and consistently,
supporting more effective and informative biomonitoring (12, 13).
The Peace–Athabasca Delta (PAD) in northern Alberta,

Canada (Fig. 1 and ref. 14) is North America’s largest inland
delta (∼6,000 km2) and is located at the confluence of the Peace
and Athabasca Rivers, consisting of hundreds of lakes and wet-
lands that become connected during flood events, particularly
when spring snowmelt leads to ice jams (15, 16). The PAD is a
Ramsar wetland, protected within Wood Buffalo National Park,
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a United Nations Educational, Scientific and Cultural Organi-
zation World Heritage site. Nonetheless, there have been con-
cerns that the PAD could be affected by upstream developments,
including current and proposed hydroelectric dams on the Peace
River, continued expansion of oil sands mining on the Athabasca
River to within 30 km of the park boundary, and climate change
(17). Assessing how such factors influence the integrity of a
natural wilderness is made more challenging by the paucity of
biological surveys that have been conducted and the logistics of
working in such a remote region. To gain a better understanding
of the PAD’s ecology, rapid assessments of aquatic macro-
invertebrates have been conducted in since 2011 to establish a
baseline understanding of the ecosystem’s diversity and structure
(14, 18). Importantly, while surveys have followed established
protocols from the Canadian Aquatic Biomonitoring Network
(hereafter CABIN) (19), samples were processed using both
traditional and DNA metabarcoding approaches, allowing us to
test the power of each approach to support environmental
management of the delta.
Sampling error is a ubiquitous feature of any ecological survey,

irrespective of the methodology, and of particular concern is the
frequency of false absences (20). Depending on the covariance of
species’ detectability with other environmental characteristics,
models can be structurally biased and their confidence over-
estimated (21). Although imperfect detection is very common,
and freshwater biomonitoring protocols have a long history of
standardization to maintain comparability (5), there are few
examples of research explicitly quantifying the nature of sam-
pling error (e.g., ref. 22). Instead, variability due to sampling
error is usually combined with that from natural sources (i.e., as
“noise”; ref. 23). An alternative is to specify the likelihood of
detection (the observation process model) and simultaneously
correct our estimates of species occurrence (the ecological state

model) within a single hierarchical framework (24). In this study,
we employed multispecies occupancy models (MSOMs; refs. 25
and 26) to account for the effects of imperfect detection on es-
timates of macroinvertebrate diversity, drawing upon data from
6 y of macroinvertebrate surveys in the PAD. We quantify the
efficiency with which the macroinvertebrate community can be
surveyed using both traditional morphological identification and
DNA metabarcoding and demonstrate that these approaches
make a qualitative difference to our view of how the meta-
community is structured, to the efficiency of monitoring, and
consequently to our power to detect change (27).

Results
A key difference between our sampling approaches was that the
standard CABIN wetland protocol (19) provided estimates of
relative abundance based on counts from a subset of each sam-
ple, whereas sequences identified using DNA metabarcoding
were converted to presence–absence data (13, 28). In addition,
CABIN identified 74 families based on morphological features,
but metabarcoding could identify 109 families, as well as 263
genera (SI Appendix, Fig. S1.6). As a result, we trained four hi-
erarchical MSOMs for each data type: 1) counts of macro-
invertebrate families from CABIN (CABIN Fcount), 2) the
presence–absence of macroinvertebrate families from CABIN
(CABIN Fpa), 3) the presence–absence of macroinvertebrate
families from DNA data (DNA Fpa), and 4) the presence–
absence of macroinvertebrate genera from DNA data (DNAGpa).
Although metabarcoding can discriminate among taxa at even
finer resolution (i.e., species), given the prevalence was lower
than the prevalence of genera and the available sample size, we
did not feel the detectability and occupancy of those taxa could
be estimated reliably.

Occupancy and Detectability. The CABIN Fcount model predicted
total abundance was dominated by four taxa (two Chironomidae
subfamilies, Oligochaeta and Planorbidae) but also suggested
that almost all taxa were present everywhere within the PAD
(i.e., site occupancy ∼1), with no environmental covariates
retained in the final model. This scenario is plausible, but if we
apply the predicted probabilities of detection and same survey
effort (number of individuals counted), and assume taxa are
sampled at random from the pool of individuals, the CABIN
Fcount model suggested we should have observed 38 taxa on
average instead of 18. Nonrandom aggregation of individuals is
typical of ecological communities (29) and may be why the model
appeared to be misspecified.
In contrast to the count-based model, the presence–absence

models all suggested taxon site occupancy was below 1 (Fig. 2
and SI Appendix, Fig. S1.10), although the “U-shaped” form of
the hyperparameters in Fig. 2 A and C was an artifact of the
bounded distribution (29). The CABIN Fpa model that esti-
mated the probability of detecting macroinvertebrate families
was lower than the DNA Fpa model (Fig. 2B right-skewed rel-
ative to Fig. 2 D and E; see also Fig. 3). Models must balance the
expected occupancy to fit with the detections, and probability of
detection made in each survey, and the CABIN Fpa model
therefore also predicted higher occupancy than the DNA Fpa
model (Fig. 2A left-skewed relative to Fig. 2C). The differences
in occupancy and detectability of specific families were not as-
sociated with prevalence, although many taxa were not recorded
by both approaches and therefore cannot be compared (red
points in Fig. 3; see SI Appendix, Appendix 1 for detail). In ad-
dition, detectability using DNA metabarcoding is intrinsically
linked to the genetic primer used (30), and the importance of
primer bias is well known from mock laboratory samples (e.g.,
ref. 31). Here we show biases in detectability can be quantified as
part of the observation model, either at the community level
(Fig. 2 D and E) or for individual taxa (SI Appendix, Fig. S1.11).

Fig. 1. Location of sampling sites in the PAD. (Inset) The full extent of
Wood Buffalo National Park in Alberta (AB), and boundaries of neighboring
provinces: British Columbia (BC), Saskatoon (SK), and the Northwest Terri-
tories (NWT). Photo taken at Rocher River wetland (PAD 37).
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Finally, neither the CABIN Fcount nor Fpa model retained en-
vironmental variables to explain changes in occurrence, whereas
both DNA occupancy models did so consistently. The covariates
retained were 1) the frequency of spring and summer floods (i.e.,
connections between the wetland and river), 2) time since the ice
melt, and 3) maximum water temperature prior to each survey.
Responses to environment at the community level were almost
neutral (SI Appendix, Fig. S1.13), and the posterior distribution
of coefficients differed from zero for only a minority of taxa (SI
Appendix, Fig. S1.14), but their inclusion in the model suggests
the high interannual turnover (SI Appendix, Fig. S1.7) may be
explained in part by deterministic factors.

Alpha, Beta, and Gamma Diversity. Recognizing that imperfect
detection is commonplace in ecological surveys, it follows that
regional (gamma diversity; SI Appendix, Fig. S1.8) and local

(alpha diversity; SI Appendix, Fig. S1.9) diversity is routinely
underestimated. As the CABIN Fcount model effectively as-
sumed alpha and gamma diversity were equal, it estimated that
only two families were likely to have gone undetected in the
metacommunity. Conversely, the CABIN Fpa model estimated
∼20 families were missed (i.e., γ = 95), a 28% increase on the
observed total. Interestingly, this estimate was still short of the
richness observed using metabarcoding (n = 109), and based on
the distribution of detection probabilities, the DNA Fpa andGpa
models estimated the metacommunity could potentially contain
130 families and 360 genera, a 19% and 37% increase (SI Ap-
pendix, Fig. S1.8).
Although imperfect detection always underestimates richness,

its effect on the observed compositional dissimilarity between
sites (beta diversity) is less predictable. The observed pairwise
dissimilarity of samples consistently exceeded 40%, both within
and between years, with no consistent increase over time (SI

Fig. 2. Predicted occupancy (A and C) and detectability (B, D, and E) of taxa
based on the presence–absence data collected using the CABIN protocol (A
and B) and DNA metabarcoding (C–E) at the family level. Detectability using
metabarcoding is further split by primer pair (D and E). The shaded polygons
describe the probability density of the community hyperparameters, and the
gray bars indicate the underlying frequency of the values estimated for each
taxon. See SI Appendix, Fig. S1.10 for the CABIN Fcount and DNA Gpa model
distributions.

Fig. 3. Comparison of (A) occupancy and (B) detectability estimates in
models trained by CABIN data and DNA metabarcode data at the family
level (n = 50). Red points indicate taxa not observed by the complementary
method, that is, 18 and 59 families were unique to CABIN and meta-
barcoding, respectively. See SI Appendix, Appendix 1 for further information
on the identities of unique taxa.
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Appendix, Fig. S1.7). Our analysis showed that compositional
turnover in the CABIN dataset was overestimated, whereas for
the DNA models the corrected and observed dissimilarities were
similar (SI Appendix, Fig. S1.15), although temporal turnover
(i.e., interannual, within-site dissimilarity) was marginally over-
estimated by the DNA dataset. This implies that although met-
abarcoding underestimated alpha diversity at each site, the
proportions of the taxa missed that were shared or unique to site
pairs were similar. Finally, one predictable aspect of turnover is
that as the taxonomic resolution is increased subtaxa are on
average less prevalent than their parental ranks (SI Appendix,
Fig. S1.12A), typically harder to detect (presumably because they
are also less abundant than parental ranks), and therefore dis-
similarity among sites at the genus level was 7% higher com-
pared to the family level.

Power Analysis. The power to detect statistically significant
changes depends on the strength of the ecological signal relative
to other natural variability, as well as the efficiency with which we
can accurately describe ecological state, factors directly related
to taxonomic resolution, and detectability (27). We simulated the
PAD metacommunity based on a fitted distribution of occupancy
and estimated gamma diversity to represent its baseline condi-
tion and then took subsamples that reflected the observed biases
in each sampling approach. Note that the true state and behavior
of the system are unknown, and underlying processes were in-
stead inferred by the MSOMs after quantifying observation
biases. Human impacts that might affect the PAD system in the
future were also unknown, and this analysis therefore aimed to
identify our power to observe a generalized stressor effect. To
keep the process model consistent, we based simulations on the
most detailed DNA Gpa model and then aggregated taxa to
higher ranks to compare power among sampling approaches. A
complete description of the simulation and power analysis is
provided in SI Appendix, Appendix 2.
A natural consequence of high, near-random, background

variation in composition is that degradation of a wetland site
would need to be severe to raise concerns. Instead, it is more
effective to measure when there is a shift away from our ex-
pectation of the PAD metacommunity aggregated across sites
(i.e., changes in occupancy of many taxa). Even so, based on the
high natural variability of the PAD, the survey effort needed to
confidently detect shifts in occupancy in any year would be
prohibitive. As a result, we considered a monitoring system to be
adequate if significant differences in composition were detected
within 2 y (at least 50% of the time; SI Appendix, Fig. S2.4). Our
results demonstrated that our power increased 1) as the number
of sites sampled increased (but the rate of increase declined
beyond 8 to 10 sites per year); 2) with DNA metabarcoding
compared to CABIN sampling, and with genus- compared to
family-level data; and 3) if we sampled sites multiple times (but
gains depended on the number of sites and sampling approach)
(Fig. 4). Statistical power also varied by stressor type because
metacommunity shifts were readily apparent if the stressor im-
pacted prevalent taxa, whereas changes were challenging to ob-
serve if prevalent taxa were also tolerant. The relationship
between taxa occupancy and their sensitivity to a stressor was
therefore most influential when sample sizes, and hence our
power to detect rare taxa, were low (SI Appendix, Fig. S2.6).

Discussion
The PAD represents one of Canada’s national biodiversity
treasures. However, multiple external pressures, including the
development of oil sands, hydroelectric power, wildfires, and
climate change are potentially affecting biodiversity through
modification of natural physical processes in the area and
threaten its World Heritage listing (17). Our study demonstrates
that the PAD is an immensely rich habitat, including over 25%

and 20% of all aquatic macroinvertebrate families and genera
recorded by the CABIN national biomonitoring program (32).
This total may still underestimate the total diversity present, and
we demonstrate the importance sampling errors can have for
modeling this community. Communities exhibited near-random
patterns of spatial and temporal turnover, a property rarely ob-
served in freshwater systems (33). As a result, impacts on the
wetland macroinvertebrate community are difficult to establish
at local scales because occurrence is weakly related to environ-
mental factors and site composition can fluctuate rapidly over
time (SI Appendix, Fig. S1.7). Properties of the metacommunity
must therefore be aggregated across sites, and directional shifts
can only be inferred when dissimilarities are unlikely to be
explained by stochastic differences in our null baseline model
(34). Our analysis shows that detecting a decline in meta-
community condition would depend on both sample size and
stressor type, and that further changes to sampling design may be
required to detect change earlier or at specific locations
of concern.
The most significant finding of this study was the value added

to biomonitoring data generated by DNA metabarcoding of bulk
community samples. Our analysis supports previous studies that
have shown the breadth and resolution of taxonomic information
achievable with metabarcoding (e.g., refs. 14 and 35). Clear
differences in occupancy and detectability profiles with meta-
barcoding (Fig. 3) influence our description of baseline reference
conditions (36, 37). Further differences in estimates of occu-
pancy with increasing taxonomic resolution (SI Appendix, Fig.
S1.12) may also indicate differential environmental responses (38,
39). We did not find evidence to suggest the count data (“relative
abundance”) in CABIN samples were necessary to detect
changes in ecological structure. In fact, only the presence–
absence DNA metabarcoding models identified significant rela-
tionships with the major environmental covariates of this region
(16). These effects could be estimated precisely because de-
tectability, and thereby sampling efficiency, was higher for so
many taxa using DNA metabarcoding (13). We also used the
occupancy model framework to compare detectability of each

Fig. 4. Minimum reduction to community occupancy that is detect-
able >50% of the time with 95% confidence in response to number of sites
surveyed annually. Lines show the average of 100 simulations based on the
CABIN Fpa (blue), DNA Fpa (red), and DNA Gpa (green) occupancy-detection
models, with either single (open symbol) or triplicate (closed symbol) sam-
ples per site. Taxon tolerance was not correlated with occupancy. See SI
Appendix, Appendix 2 for further information.
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taxon with different primers, a more robust measure of their
complementarity than lists of taxa observed. Quantifying de-
tectability is vital to making the results of this study comparable
to others with varying protocols, and this approach could be used
to refine and select complementary primers (28, 31). Crucially,
DNA metabarcoding, particularly at the genus level, substantially
improved our power to detect ecosystem-scale changes compared
to traditional CABIN sampling (Fig. 4 and SI Appendix, Appendix
2). Extending this approach to the species level could improve
overall power further still, as long as a sufficient number of species
have a similar probability of detection as their parent genera.
A second significant outcome was the importance of explicitly

considering imperfect detection. Practitioners are well aware of
sampling differences (e.g., ref. 40) but have typically focused on
how those errors propagated to aggregated metrics, rather than
explicitly quantifying the sources of uncertainty (23). Hierarchi-
cal occupancy models accommodate irregularly sampled data,
estimate community properties (that extend inference to rare
taxa), and allow straightforward biological interpretations of
those parameter estimates (41). There have been few examples
of hierarchical models accounting for detectability in freshwater
ecology (e.g., refs. 42 and 43), despite studies showing it can bias
our interpretation of taxonomic, functional, and phylogenetic
diversity at the community level (e.g., ref. 44). Given the high
prevalence of false absences it is not surprising occupancy
models are becoming commonplace for analyzing eDNA data
(45), although it appears multispecies models are still rare (46).
Importantly, what these and other studies have shown is that the
time and expense of adding replicate samples may be the most
efficient way to improve the statistical power of a study (24, 47).
Inferences about the number of taxa missed in the meta-
community naturally carry some uncertainty (48), but by ac-
knowledging imperfect detection, risks can be quantified, and
decision makers’ overall efficiency can be improved. This anal-
ysis minimizes the likelihood of management agencies respond-
ing to a false signal of degradation (type 1 error) and identifies
how to optimize survey design to ensure we have the necessary
power to detect a desired degree of change (type 2 error) (27, 49).
Although our analysis provided evidence of environmental

filtering, the distribution of beta diversity was equivalent to that
expected from random assembly, suggesting that the meta-
community was operating in a quasi-neutral manner at the scale
of our analysis (50). Quasi-neutral dynamics are expected to be
commonly observed in taxon-rich communities, but given the
high degree of landscape connectivity, we would expect mass
effects, rather than dispersal limitation, to underlie the low
habitat specificity of the community. Our dataset was insufficient
to identify which mechanisms underlie metacommunity assem-
bly, because the same patterns of turnover may be the result of
different assembly processes (51). While further studies could
reduce this uncertainty, currently models of coexistence that
combine stochasticity with niche theory may be the most suitable
option to explain the structure and dynamics of aquatic in-
vertebrate communities in the PAD, without relying on the
fragile premise of ecological equivalence in neutral theory (50,
52). Although many ecologists have acknowledged stochastic
processes are likely to have a role in understanding community
composition (53, 54), we are unaware of any biomonitoring
programs that incorporate, or even acknowledge, community
assembly mechanisms other than environmental filtering (e.g.,
ref. 37). Our results firmly challenge that traditional perspective,
and if we wish to understand the resilience of the PAD, we must
adopt a metacommunity perspective (55). More broadly, a
metacommunity perspective of the PAD could indicate which
assembly processes are absent from more managed landscapes,
therefore providing critical insights into the mitigation of bio-
diversity loss at the landscape scale.

The isolation of wilderness areas like the PAD implies a pristine
nature, but that isolation has also hindered our appreciation of the
sheer magnitude of diversity which occurs there and has until now
precluded a basic description of how community structure changes
over space and time. Near-random patterns of assembly and
substantial sampling error pose a challenge to detecting ecosystem
change. Without evaluating data quality and statistical power at
the start, many monitoring programs are unable to confidently
reject a false null hypothesis, undermining project goals and
providing a misleading sense of achievement (27, 56). Despite the
high turnover, we show the statistical power of data generated by
DNA metabarcoding was superior to traditional biomonitoring
approaches for the detection of large-scale ecosystem change.
Although macroinvertebrate composition provides a wealth of
information, the power to detect and draw inference from taxo-
nomic changes will be improved by further refining the list of taxa
that respond to particular threats (e.g., oil sands contaminants),
particularly by linking metabarcoding to trait databases (57), and
this remains a major focus of our ongoing research.

Materials and Methods
Field Surveys. Field survey methods followed the CABIN wetland macro-
invertebrate protocol (14, 19). Briefly, aquatic invertebrates were sampled by
sweeping submerged and emergent aquatic vegetation at wetland edges
for 2 min. A sterile 400-μm-mesh net was steadily moved in a zig-zag pat-
tern, from the surface of the sediment to the water surface, to capture
disturbed organisms and minimize the amount of sediment collected. Excess
vegetation was carefully rinsed and removed, and samples with excess
sediment were sieved. Material was placed in sterile 1-L polyethylene sample
jars, filled no more than half full, and immediately preserved in 95% ethanol
in the field. Samples were stored in a cooler with ice in the field and
transferred to a freezer at the field station before shipment. Nets were
disinfected between each new site, and field crews wore nitrile gloves to
collect and handle samples, minimizing the risk of cross-site contamination.

Sample Processing. In total, 126 and 138 samples were collected from 72
separate site visits for the CABIN and DNA metabarcoding datasets, re-
spectively (SI Appendix, Table S1.2). Samples identified using morphological
characteristics were processed and identified in accordance with the CABIN
laboratory manual (19). Briefly, material from each 2-min sweep was sub-
sampled using a 100-cell Marchant box. Successive cells were processed until
at least 300 individuals were identified and a minimum of five cells were
processed. Most taxa were identified to the family level, although for some
groups only class- or order-level identification was recovered, and given the
importance and diversity of Chironomidae, we retained four subfamily di-
visions that could be reliably identified (SI Appendix, Appendix 1) (58).

The laboratory protocol for processing samples for DNA metabarcoding
followed the same procedure as outlined in Gibson et al. (14). This targeted
the CO1 amplicon using two complementary primers, BE/BR5 and F230R (30,
59). All DNA samples were analyzed using BE or BR5 that target the same
COI region, and F230R was introduced in 2012. While field and laboratory
protocols have remained consistent since the study began, there have been a
number of advances made in bioinformatic tools, as well as expansion of the
reference sequence libraries supporting the identification of taxa (60). The
bioinformatic pipeline used to process all samples in this study, as well as
the CO1 classifier that allocates sequences to the most likely taxa, is de-
scribed in SI Appendix, Appendix 1 and available on GitHub (61). The se-
quences generated have been deposited in the NCBI Sequence Read Archive,
project PRJNA603969.

Hierarchical MSOM. MSOMs employ a flexible hierarchical framework that
allows for imperfect detection to predict species’ occurrence (25). The hier-
archy consists of an underlying state model that describes the probability of
species’ occurrence and a second observation model to describe the proba-
bility of detecting that species when it is present (informed by detection
across replicates). The fitted state model is thereby updated to account for
the probability of false negatives. MSOMs extend this single-species ap-
proach by assuming species’ coefficients are related and can be treated as
random effects, drawn from a common distribution (hyperparameters). Data
augmentation extends the community approach a step further by using the
hyperparameters for occupancy and detectability to estimate the possibility
additional taxa may have been present but by chance were never observed.
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Our analysis adapted the notation and code provided by ref. 41 as the basis
for this study (see SI Appendix, Appendix 1 for model code):

1. Data augmentation process: wk ∼BernoulliðΩÞ
2. State process: zik ∼BernoulliðwkψkÞ
3. Observation process: yijk

��� zik ∼BernoulliðzikpijkÞ
4. Models of taxon heterogeneity:

logitðψkÞ∼ lpsik +betalpsik × covariatei + . . .
logit

�
pijk

�
∼ lpk +betalpk × covariateij + . . .

Given: lpsik ∼Normal
�
μlpsi , σ

2
lpsi

�

betalpsik ∼Normal
�
μbetalpsi , σ

2
betalpsi

�

lpk ∼Normal
�
μlp, σ

2
lp

�

betalpk ∼Normal
�
μbetalp, σ

2
betalp

�
.

The observed data yijk describe the detection or nondetection of taxon k
at site i in replicate sample j. Replicate observations, in our case simulta-
neous independent samples (21), allowed the model to discriminate be-
tween processes that determine the system’s state (occupancy) and the
observation process (detectability). The occupancy of each taxon at each site
zik is described by a Bernoulli trial with probability ψ ik, and the likelihood of
detecting the respective taxa in each replicate sample is described by an-
other set of Bernoulli processes with probability pijk. Seven water temper-
ature and flood regime variables were tested as covariates within a multiple
logistic regression for occupancy, and measures of sample processing effort
were tested for detectability (sequencing depth and the number of indi-
viduals identified). Individual intercepts and slopes represented species-
specific random effects, governed by a common prior distribution whose
mean and variance were estimated as a community-level hyperparameter.

The statistical distributions of the parameters governing occupancy and
detectability shared by the communitywere used to consider the possibility of
other taxa in the metacommunity that were not recorded in any visit to any
site, a process known as data augmentation (48, 62). Given a sufficiently large
total pool ofM potential taxa, a set of binary indicators, wk, governed by the
parameter Ω, represent the probability each taxon is part of the community.
The total number of taxa in the metacommunity (γ diversity) is therefore
simply the sum of wk.

The occupancy model above was suitable for presence/absence observa-
tions of taxa, but CABIN samples also included information on the relative
abundances of taxa. To utilize all information available, we constructed a
community-level N-mixture model that estimates the latent abundance Nik

of each taxon, rather than their occurrence (zik), and modeled counts as a
function of a Poisson distribution:

2. State process: Nik ∼ PoissonðwkλkÞ
3. Observation process: yijk

���Nik ∼BinomialðNik ,pijkÞ
4. Models of taxon heterogeneity: logðψkÞ∼ lpsik +betalpsik × covariatei + . . . .

Finally, model selection for covariates of taxon heterogeneity in both the
occupancy and N-mixture models was determined by a set of binary in-
dicator variables Vx1-xn, one for each of the n predictor variables used (63).
Using Vx ∼ Bernoulli(0.5) as standard priors, variables had an equal likeli-
hood of being included or excluded from likelihood estimates, and model
selection was therefore based on which combination had the highest joint

posterior probability p(Vx1-xn = 1). Note convergence of the Vx indicators
was very slow, particularly in the most complex models, and a “slab and
spike” approach did not improve mixing (see 7.6.2 in ref. 41).

Analyses were conducted using the R package jagsUI (64). We assessed
model convergence of all monitored parameters across chains by visual in-
spection of trace plots and by using the Gelman–Rubin statistic (65), with the
diagnostic value <1.1. As overdispersion cannot be estimated from the bi-
nary responses in occupancy models (41), plots of Dunn–Smyth residuals for
fitted estimates of occupancy and detectability were used to evaluate the fit
of separate taxa (66). Although plots suggest the models were well fit in
most cases, the pattern of residuals suggested there may have been other
covariates, or nonlinear effects, missing from the models influencing the
occupancy of some taxa.

Simulation and Power Analysis. The code and process used to simulate com-
munities are described in detail in SI Appendix, Appendix 2. In summary, a
hypothetical presence–absence matrix of the metacommunity was derived
from estimates of gamma diversity and occupancy in the DNA Gpa occu-
pancy model from which we could manipulate sampling designs. Environ-
mental covariates were varied according to the mean and SD of values
observed from the surveys available to us (SI Appendix, Fig. S2.1), but the
simulation was not spatially explicit. While occupancy covariates drove some
temporal turnover (SI Appendix, Fig, S2.2; ∼10 tp 27%), this was insufficient
to replicate the turnover observed (SI Appendix, Fig. S2.3), so permutation of
the presence–absence matrix was used to simulate further stochastic
changes in composition (i.e., local extinction/colonization; ref. 67). Repli-
cating observed turnover required the complete redistribution of occur-
rences (i.e., random assembly patterns). Taxon occupancy (row sums) and
site richness (column sums) were held constant during permutation. The
metacommunity was modified by successively removing occurrences of taxa
based on a hypothetical distribution of tolerances, which were themselves
generated to covary with the distribution of occupancy. Sampling error was
applied by a binomial function weighted by the taxon’s probability of de-
tection, and the “detected” composition of reference and modified meta-
communities were then compared using mvabund (68). Power of DNA Gpa
was compared to DNA Fpa and CABIN Fpa approaches by aggregating
genera to the family level and subsequently applying the family-level de-
tection probabilities.

Data Availability. All datasets needed to evaluate our conclusions are publicly
available as referenced within the article and described in SI Appendix.
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